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Abstract

We introduce a method for solving the variable coefficient Poisson equation on non-graded Cartesian grids that yields
second order accuracy for the solutions and their gradients. We employ quadtree (in 2D) and octree (in 3D) data structures
as an efficient means to represent the Cartesian grid, allowing for constraint-free grid generation. The schemes take advan-
tage of sampling the solution at the nodes (vertices) of each cell. In particular, the discretization at one cell’s node only uses
nodes of two (2D) or three (3D) adjacent cells, producing schemes that are straightforward to implement. Numerical
results in two and three spatial dimensions demonstrate supra-convergence in the L1 norm.
� 2006 Elsevier Inc. All rights reserved.
1. Introduction

The variable coefficient Poisson equation is a model at the core of diffusion dominated phenomena and
therefore is a component used in the simulation of many important applications ranging from incompressible
flows to semiconductor modeling to tissue engineering. Several approaches exist to solve numerically the
variable coefficient Poisson equation on uniform grids in the case of regular domains (see e.g. [15] and the ref-
erences therein), as well as in the case of irregular domains (see e.g. [10,11,14,17,18,23–25] and the references
therein). However, many physical problems have variations in scale and when solving these problems numer-
ically, uniform Cartesian grids are limited in their ability to resolve small scales. Uniform grids in such situ-
ations are inefficient in terms of memory storage and CPU requirements since only small portions of the
computational domain require fine resolutions. Therefore, it is highly desirable to lower the total number
of grid cells involved in the discretization. Since their inception, adaptive mesh refinement techniques have
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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provided a tool to systematically concentrate the computational effort where it is most needed, allowing for
efficient resolution.

Adaptive mesh strategies are becoming popular, see e.g. [7,13,30] in the case of the study of incom-
pressible flows. However, implementations based on recursive structures, such as quadtrees/octrees are
less common. While in some cases (e.g. compressible flows) the mesh must be constrained to avoid
non-physical effects (e.g. spurious shock reflections [5]), several applications including incompressible flows
and the Stefan problem for example, do not require any special constraints and thus more optimal data
structures can be used. Quadtree/Octree data structures have been proven to be optimal in such cases, as
pointed out in [1].

Discretizations of an elliptic linear partial differential equation by finite differences, finite elements or the
finite volume method result in a linear system to be solved. The numerical efficiency of finite element meth-
ods (FEM) is in large part attributed to the fact that such formulations always yield symmetric linear sys-
tems, which are computationally inexpensive to invert, e.g. with preconditioned conjugate gradient methods
[12,27]. Moreover, the theoretical framework associated with FEM makes these methods attractive. How-
ever, FEM on adaptive meshes is often challenging to implement due to the large number of special cases
to take into account when discretizing the equations. This stems from the fact that the support of the basis
functions associated with one cell might involve an arbitrary number of neighboring cells, making a general
procedure difficult to write. Constraints can be introduced to limit the ratio between two adjacent cell sizes
to at most two (graded trees). Although graded trees can be constructed from non-graded trees, such oper-
ations introduce a large amount of additional cells in the domain, significantly lowering the efficiency of the
method.

Young et al. [31] introduced a finite element method employing adaptive mesh refinements for second-order
variable-coefficient elliptic equations using a cut-cell representation of irregular domains. Almgren et al. [3]
solved the variable coefficient Poisson equation in a block-structured adaptive grid in the context of the incom-
pressible Navier–Stokes equations. Johansen and Colella [14] presented a cell-centered numerical method for
solving the variable coefficient Poisson equation on irregular domains using a multigrid approach and a block-
grid algorithm related to the adaptive mesh refinement scheme of Berger and Oliger [6]. McCorquodale et al.
presented a node-centered approach to solving the variable coefficient Poisson equation on irregular domains
using the block-structured adaptive mesh refinement multigrid solver of Almgren [2,4]. These schemes, how-
ever, do not consider non-graded meshes.

In [26], Popinet proposed a second order non-symmetric numerical method to study the incompressible
Navier–Stokes equations using an octree data structure. In his method, a Poisson equation for the pressure
needs to be solved to account for the incompressibility condition using a standard projection method (see
e.g. [8]). The pressure is sampled at the center of each cell and the discretization of the Poisson equation
requires interpolation procedures involving the pressure values at several adjacent cells. As a consequence, this
discretization is intricate and yields a wide band in the linear system. Moreover, only graded trees were con-
sidered in [26].

Losasso et al. [21] proposed a first order accurate Poisson solver on non-graded grids and applied this sol-
ver to the motion of free surface flows. The work relied on the observation that, in the case of the Poisson
equation, first order perturbations in the location of the solution produce consistent schemes (see [11]). More-
over, by limiting the Poisson solver to first order accuracy, a symmetric discretization that is computationally
efficient to invert was achieved. This work was extended to second order accuracy in [20] using some of the
ideas discussed by Lipnikov et al. [19]. However, it is unclear whether or not the solution’s gradients can
be found to second order accuracy. In some applications (e.g. Stefan type problems), the accuracy of the solu-
tion’s gradients determine the overall accuracy of the method and therefore a first order accurate solution may
lead to a degradation in the accuracy.

In this paper, we propose a second order accurate finite difference discretization for the variable coefficient
Poisson equation on non-graded grids that also yields second order accuracy in the solution’s gradients. The
scheme is based on sampling the solution at the nodes of a cell. The discretization at one cell’s node only uses
nodes of two (2D) or three (3D) adjacent cells, producing schemes that are straightforward to implement.
Examples in two and three spatial discretizations demonstrate second order accuracy in the L1 norms for
the solution and its gradients.
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2. Spatial discretization

The domain is discretized into squares (in 2D) or cubes (in 3D) and we use a standard quadtree (in 2D) or
octree (in 3D) data structure to represent this discretization. More precisely, consider the case depicted in
Fig. 1 in two spatial dimensions: the entire domain is originally associated with the root of the tree and then
split into four cells of equal sizes, called the children of the root. The discretization proceeds recursively, i.e.
each cell can be in turn split into four children and so forth. A cell with no children is called a leaf. By def-
inition, the level of the root is zero and is incremented by one every time a new generation of children is added.
The anisotropy ratio of a cell is defined as the ratio between the width and length of that cell. The anisotropy
ratio of a quadtree is the maximum of the anisotropy ratios. Hence, a quadtree of anisotropy ratio of one has
squares only in the subdivision. Finally, two cells are called neighbors if they share a common face. As men-
tioned in Section 1, discretizations found in finite element methods often limit the difference of level between
two adjacent cells to one to simplify the calculations and the number of cases to consider. Popinet [26] also
applies this constraint to his finite difference method, which leads to graded trees. In the method we propose
in this work, we do not impose any constraints on the difference of level between two adjacent cells, yielding a
non-graded mesh generation.

Similarly, in three spatial dimensions, the domain (root) is split in eight cubes (children) and each cell can be
recursively split in a similar manner. The interested reader is referred to [28,29] for more on octree data
structures.

3. Accuracy analysis

In the case of one-dimensional second order differential equations on irregular grids, Manteufell and White
[22] as well as Kreiss et al. [16] proved that standard central differencing schemes produce second order accu-
rate solutions, even though local Taylor analysis dictates that the methods are at most first order accurate (see
also [9]). In the case of the Poisson equation on irregular grids, supra-convergence has been observed numer-
ically by Johansen and Colella [14]. Gibou et al. [11] also observed this fact in the case of the Poisson equation
on uniform grids but irregular domains. In [21], Losasso et al. proposed a first order accurate scheme for
solving the Poisson equation on non-graded grids in the context of the Navier–Stokes equations. They dem-
onstrate that their scheme is globally first order accurate (consistent), even though the discretization at non-
uniform mesh points is inconsistent. In fact, the different approximations of the pressure gradients in [21]
result in consistent schemes, regardless of how the distance between the two adjacent cells involved in the dis-
cretization of the pressure gradients was accounted for. In this case, the scheme is therefore locally inconsistent
on nonuniform meshes but reduces to a second order accurate discretization at locally uniform mesh points.
This was explained by the fact that first order perturbations in the location produce a consistent method as
demonstrated in [10,11]. Johansen and Colella [14] provided a heuristic argument based on potential theory
as to why schemes that are only first order accurate at locally nonuniform grid nodes can be globally second
order accurate. This phenomena can be intuitively understood as follows: Consider a discretization Xh of a
Fig. 1. Discretization of a two-dimensional domain (left) and its quadtree representation (right). The entire domain corresponds to the
root of the tree (level 0), and each cell subdivided further points to its four children. In this example, the tree is not graded since the
difference of level between neighboring cells can exceed one.
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Cartesian domain X 2 Rd , with Ntotal number of cells and Nnonunif number of nonuniform cells. Here, we say
that a cell is locally nonuniform if its size is different from the size of at least one of its neighbors whereas a cell
is locally uniform if its size is equal to that of all of its neighbors. After the pth refinement, the grid contains
Ntotal Æ 2dÆp cells, with O(Nnonunif Æ 2(d�1)p) nonuniform cells, since the set of nonuniform cells is of codimension
one. Therefore, after the pth refinement, there are O(2dÆp) locally uniform cells and O(2(d�1)p) locally nonuni-
form cells. In turn, the influence of nonuniform cells is absorbed by that of the uniform one, yielding a second
order accurate scheme (see [14] for details). Based on this argument and on numerical evidence, we hypoth-
esize in this paper that a strategy for deriving pth order accurate finite difference schemes in the L1 norm,
is to focus on designing schemes that are (p � 1)th order accurate at locally nonuniform cells, which reduce
to at least pth order accurate schemes at locally uniform cells. In particular, in order to derive second order
accurate schemes, we will focus on finding a consistent approximation at non-uniform cells (see Fig. 2).

4. A note on center-based and node-based discretizations

There are mainly two standard choices for sampling the solution of an elliptic problem: sampling at the
nodes or at the center of each cell. A cell-centered sampling often leads to a symmetric linear system, since
the relation between neighbors is reflective. For example, in the case depicted in Fig. 3 (left), it is geometrically
natural to define the discretization at c4 in terms of c2,c3,c5,c6. Likewise, the discretizations at c2,c3,c5 and c6

will all naturally include c4. In contrast, in the case of the node-based sampling depicted in Fig. 3 (right), it is
geometrically natural to define the discretization at v1 in terms of v2,v3,v4,v5,v6, and to define the discretization
at v6 in terms of v4,v5,v7. As a consequence, the equation for v1 involves v6, but the discretization for v6 does
not involve v1, and thus produces nonsymmetric discretizations. In the case of cell-centered sampling, one can
prove the following result:

Theorem 1. Consider the discretization of the Poisson equation at the center of a cell C. If only adjacent cells are
to be used, then there does not exist any locally consistent linear scheme on nonuniform Cartesian grids.
Fig. 2. Example of refinement in two spatial dimensions. The total number of cells increases quadratically whereas the number of locally
nonuniform cells (shaded) increases linearly. The contribution of nonuniform cells decreases relatively to that of uniform cells.

Fig. 3. Cell-centered sampling (left) and node-based sampling (right).
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Proof. Referring to Fig. 3 (left), let ui be the solution at ci and consider the discretization at c4. For a linear
consistent scheme to exist, we must be able to find the coefficients ai such that
Fig. 4
u3 þ u5

second
a4u4 þ a2u2 þ a3u3 þ a5u5 þ a6u6 ¼ uxx þ uyy þOðhÞ;

where h denotes the length of the edge of cell c4. A simple Taylor analysis implies that the coefficients ai must
satisfy the following linear system
1 1 1 1 1

0 �h 0 3h
2
� h

2

0 0 h h
2
� 3h

2

0 h2

2
0 9h2

8
h2

8

0 0 0 3h2

4
3h2

4

0 0 h2

2
h2

8
9h2

8

0
BBBBBBBBB@

1
CCCCCCCCCA

a4

a3

a2

a5

a6

0
BBBBBB@

1
CCCCCCA
¼

0

0

0

1

0

1

0
BBBBBBBB@

1
CCCCCCCCA
;

which does not have a solution. h

In the same fashion, one can prove the nonexistence of any locally consistent linear methods even when all
the neighboring cells’ values of u and f are used (i.e. also including u1, u7 and f1, f7 in this example).

We caution the reader that this observation along with Theorem 1 does not imply that there does not
exist any cell-centered linear schemes that are globally second order accurate. In fact, the finite element
method and discretizations using the hierarchically nested mesh refinements of Berger and Oliger [6] pro-
vide obvious counter examples (see Fig. 4 for a locally inconsistent discretization that yields second order
accurate solutions). The recent work of [20] is another example. Rather, this analysis serves as a guideline
for deriving high order accurate methods: A sufficient condition for obtaining a globally second order
accurate scheme is to first obtain a locally consistent scheme. In the case of a cell-centered scheme,
one avenue is to increase the number of neighboring cells involved in the discretization as in [26]. How-
ever, this approach produces more intricate schemes and led the author in [26] to consider only graded
trees to ease the implementation. Another possible framework is to sample the solution at the nodes,
which we present next.

5. Laplace equation

Consider the Laplace equation Du = f on a Cartesian domain X, with at least one Dirichlet boundary con-
dition ujoX = g on the domain’s boundary oX. In this section, we introduce schemes to solve this problem in
Rn; n ¼ 1; 2; 3 that gives second order accuracy for the solutions and their gradients. Sampling the solution at
the nodes produces a very efficient algorithm that can be applied in a dimension by dimension framework.
Notably, the discretization at the node of one cell only involves some values of the cell itself and at most
two of its neighboring cells, leading to methods that are straightforward to implement.
. Standard triangulation in a FEM framework. Using linear basis functions, the discretization at c4 reads � 7
6h2 � ðu2þ

þ u6Þ þ 28
6h2 � u4 ¼ f4, and although it can be shown to be locally inconsistent in terms of Taylor expansions it leads to a globally

order accurate method.
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5.1. One spatial dimension

In the case of a nonuniform grid, the standard finite difference discretization for the one-dimensional
Laplace equation at a grid point xi can be written as
Fig. 5.
or C a
uiþ1 � ui

siþ1
2
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si�1
2

 !
� 2

si�1
2
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2
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where si�1
2
¼ xi � xi�1. A simple Taylor analysis (with the standard abuse of notations) demonstrates that
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3
uxxx þOðh2Þ;
where we take h = maxisi+1/2. Therefore, the scheme appears to be second order accurate only when the grid is
uniform. Again, Taylor analysis gives only sufficient conditions for accuracy. In fact, it has been shown (see
e.g. [10,16,22]) that discretizations of this type are actually second order accurate.

5.2. Two spatial dimensions

The discretization in Section 5.1 can be applied in a dimension by dimension framework: consider a node u0

of a cell C with a neighboring cell Cx in x-direction and a neighboring cell Cy in y-direction that both contain
u0. Since C, Cx and Cy all include u0, either Cx or Cy should be edge-aligned with C (with respect to u0) as
shown in Fig. 5.

Referring to Fig. 6, to apply the one-dimensional finite difference discretization at the node u0, an interme-
diate value u4 is linearly interpolated from u5 and u6:
u4 ¼
s5u6 þ s6u5

s5 þ s6

.

Taylor analysis gives the following results for the standard discretizations in the x and y directions,
respectively:
There are two possible geometric configurations for C, Cx and Cy. Either C and Cx are edge-aligned with respect to the node v (left)
nd Cy are edge-aligned with respect to the node v (right).

Fig. 6. A configuration illustrating the nodes involved in the discretization at u0 in the two-dimensional case.
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u4 � u0
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The analysis in Section 5.1 demonstrates that the method will be second order accurate if one can compen-
sate for the spurious term involving uyy in Eq. (2). This is easily achieved by a linear combination of Eqs. (2)
and (3):
u4 � u0

s4

� u0 � u1

s1

� �
� 2

s1 þ s4

þ u3 � u0

s3

� u0 � u2

s2

� �
� 2

s2 þ s3

� w ¼ f0 þOðhÞ; ð4Þ
where w ¼ 1� s5s6

ðs1þs4Þ�s4
. Note that the same strategy applies to the configuration in which Cx is edge-aligned

with C. Also, not surprisingly, the weighted scheme reduces to the usual central scheme in the case of a locally
uniform grid, i.e. s1 = s4, s2 = s3, and either s5 = 0 or s6 = 0 (in which case u4 is simply not needed). This
process can be applied in a dimension by dimension framework, making the discretization straightforward
to implement.

The corresponding linear system is nonsingular in the practical case where the cells are isotropic (squares or
cubes). In fact, it is easy to formulate and prove the following theorem stating that rectangular cells can be
considered as well, given a mild constraint on the anisotropic ratio.

Theorem 2. The matrix induced by Eq. (4) is an M-matrix if the anisotropic ratio of the quadtree is smaller than

or equal to 2, and invertible if a Dirichlet boundary condition is imposed on at least one point.

Proof. By the assumption on the anisotropic the ratio, s5 + s6 6 2s4. Since s5s6 6
ðs5þs6Þ2

4
, we have

0 6 s5s6

ðs1þs4Þ�s4
6

s5s6

s2
4

6 1, and 0 6 w 6 1. Since w is nonnegative, all the coefficients of u0 in Eq. (4) have the same

sign. Since every coefficient is multiplied equally to u0 and its neighbors, the matrix is diagonally dominant. If
a Dirichlet boundary condition is imposed at one node, then the linear system is strictly diagonally dominant
at the node. By the Gerschgorin’s circle theorem, the linear system is nonsingular. h
5.3. Three spatial dimensions

In the case of three spatial dimensions, a cell C containing a node u0, has three neighboring cells Cx, Cy and
Cz in x, y and z directions, respectively that also contain u0. Since C, Cx, Cy and Cz include the same node u0,
either Cx or Cy or Cz should be edge-aligned with C, and one of the other two should be face-aligned with C as
depicted in Fig. 7. In this case, two intermediate values u4 and u5 are first linearly interpolated from the neigh-
boring nodes:
u4 ¼
u7s8 þ u8s7

s8 þ s7

;

and
u5 ¼
u11s11s12 þ u12s11s9 þ u9s10s12 þ u10s10s9

ðs11 þ s10Þðs9 þ s12Þ
;

with ui introduced in Fig. 7. Applying the one-dimensional finite difference described in Section 5.1 in each
spatial direction at u0 gives the following truncation error:
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� �
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Fig. 7. General three-dimensional configuration: There are three neighboring cells Cx, Cy and Cz of the shaded cell C that include the node
u0; here Cx is face-aligned and Cz is edge-aligned.
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As mentioned above, the scheme will be second order accurate if the spurious terms generated by the inter-
polations (the term in uzz in Eq. (5) and the terms in uxx and uzz in Eq. (6)) are cancelled. This is achieved by a
simple linear weighting of Eqs. (5)–(7):
u1 � u0

s1

þ u4 � u0

s4

� �
2

s1 þ s4

� aþ u2 � u0

s2
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� b

¼ DuþOðhÞ; ð8Þ
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a ¼ 1� s10s11

s5ðs2 þ s5Þ
;

b ¼ 1� s9s12

s5ðs2 þ s5Þ
� a

s7s8

s4ðs1 þ s4Þ
.

Again, we note that this discretization reduces to the standard second order accurate scheme for the
Laplace operator in the case where the grid is locally uniform, i.e. s1 = s4, s2 = s5, s3 = s6, a = 1, b = 1. The
linear system obtained is non singular on isotropic grid and even when relaxing slightly the condition on
the anisotropic ratio:

Theorem 3. The matrix induced by Eq. (8) is an M-matrix, if the anisotropic ratio of the octree is smaller than or

equal to
ffiffiffi
2
p

, and invertible if a Dirichlet boundary condition is imposed on at least one point.

Proof. By the assumption on the ratio, s10 þ s11 6

ffiffiffi
2
p

s5. Since s10s11 6
ðs10þs11Þ2

4
; we have 0 6 s10s11

s5ðs2þs5Þ 6
s10s11

s2
5

6
1
2
,

and 1
2
6 a 6 1. In the same way, 0 6 s9s12

s5ðs2þs5Þ 6
1
2

and 0 6 s7s8

s4ðs1þs4Þ
6

1
2
. Therefore 0 6 b 6 1. Since a and b are

nonnegative, all the coefficients of u0 have the same sign. Since every coefficient is multiplied equally to u0

and its neighbors, the matrix is diagonally dominant. If a Dirichlet boundary condition is imposed on one
node, then the linear system is strictly diagonally dominant at the node. By the Gerschgorin’s circle theorem,
the linear system is nonsingular. h
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6. Variable coefficient Poisson equation

Consider again a Cartesian domain X 2 Rn, n = 1, 2, 3 with boundary oX and the variable coefficient Pois-
son equation $ Æ (q$u) = f on X with at least one Dirichlet boundary condition u|oX = g. We assume that the
variable coefficient q is positive and bounded from below by some � > 0. The numerical methods described in
Section 5 can be extended to the case of the variable Poisson equation to produce supra-convergent schemes
on non-graded meshes. Moreover, the extension to the variable density does not increase the support of the
schemes (i.e. the number of cells involved in the discretizations), producing schemes that are straightforward
to implement in two and three spatial dimensions. Finally, just as in the case of the Laplace operator, the
matrices associated with these discretizations are also M-matrices.

6.1. One spatial dimension

With the notation of Section 5.1, the standard discretization of the one-dimensional Poisson equation is
ui�1 � ui

si�1
2

� qi�1 þ qi

2
þ uiþ1 � ui

siþ1
2

� qiþ1 þ qi

2

 !
� 2

si�1
2
þ siþ1

2

¼ fi;
and yields second order accuracy.

6.2. Two spatial dimensions

The discretization described in Section 6.1 can be applied in a dimension by dimension framework and is
sufficient to obtain second order accurate discretizations in the case where the nodes used in the discretization
are aligned. In two spatial dimensions however, nodes are no longer necessarily aligned (see, e.g. Fig. 6) and a
procedure similar to that introduced in the case of the Laplace operator must be applied in order to define a
valid intermediate value. As with the Laplace discretization, we involve the two nodes u5 and u6 and their
corresponding densities q5 and q6. The discretizations for (qux)x and (quy)y along with their Taylor analysis
are given, respectively, by
u1 � u0
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Next, we cancel the spurious term s5s6

ðs1þs4Þs4
ðquyÞy by weighting appropriately Eqs. (9) and (10):
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Theorem 4. The matrix induced by Eq. (11) is an M-matrix if the anisotropic ratio of the quadtree is smaller than

or equal to 2, and invertible if at least one Dirichlet boundary condition is imposed.
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Proof. The proof is a straightforward extension of the proof of Theorem 2. h
6.3. Three spatial dimensions

The same process can be applied in three spatial dimensions. For example, referring to Fig. 7, the finite
difference derived in one spatial dimension is applied dimension by dimension. If a neighboring point is not
aligned in the principal x, y or z direction, a multilinear interpolation similar to that introduced in Section
6.2 is performed on the finite difference approximations of qux, quy, and quz:
q1 þ q0

2
� u1 � u0

s1

þ D4

� �
2

s1 þ s4

¼ quxð Þx þ
s7s8

s4ðs1 þ s4Þ
ðquzÞz þOðhÞ;

q2 þ q0

2
� u2 � u0

s2

þ D5

� �
2

s2 þ s5

¼ quy

� �
y
þ s9s12

s5ðs2 þ s5Þ
ðquxÞx þ

s10s11

s5ðs2 þ s5Þ
ðquzÞz þOðhÞ;

q3 þ q0

2
� u3 � u0

s3

þ q6 þ q0

2
� u6 � u0

s6

� �
2

s3 þ s6

¼ ðquzÞz þOðhÞ;
where
D4 ¼
q7 þ q0

2
� u7 � u0

s4

� s8

s8 þ s7

þ q8 þ q0

2
� u8 � u0

s4

� s7

s8 þ s7

;

and
D5 ¼
q11 þ q0

2
� u11 � u0

s5

� s11s12

ðs11 þ s10Þðs9 þ s12Þ
þ q12 þ q0

2
� u12 � u0

s5

� s11s9

ðs11 þ s10Þðs9 þ s12Þ

þ q9 þ q0

2
� u9 � u0

s5

� s10s9

ðs11 þ s10Þðs9 þ s12Þ
þ q10 þ q0

2
� u10 � u0

s5

� s10s12

ðs11 þ s10Þðs9 þ s12Þ
.

Next, a linear combination of these equations allows for the cancellation of the spurious terms s7s8

s4ðs1þs4Þ
ðquzÞz,

s9s12

s5ðs2þs5Þ ðquxÞx and s10s11

s5ðs2þs5Þ ðquzÞz, giving the following consistent approximation:
q1 þ q0

2
� u1 � u0

s1

þ D4

� �
2

s1 þ s4

� aþ q2 þ q0

2
� u2 � u0

s2

þ D5

� �
2

s2 þ s5

þ q3 þ q0

2
� u3 � u0

s3

þ q6 þ q0

2
� u6 � u0

s6

� �
2

s3 þ s6

� b ¼ f0 þOðhÞ; ð12Þ
with
a ¼ 1� s10s11

s5ðs2 þ s5Þ
;

b ¼ 1� s9s12

s5ðs2 þ s5Þ
� a

s7s8

s4ðs1 þ s4Þ
.

ð13Þ
Theorem 5. The matrix induced by Eqs. (12) and (13) is an M-matrix if the anisotropic ratio of the octree is

smaller than or equal to
ffiffiffi
2
p

, and invertible if at least one Dirichlet boundary condition is imposed.

Proof. The proof is a straightforward extension of the proof of Theorem 2. h
7. A note on Neumann boundary conditions

In the case where Neumann boundary conditions are imposed on the entire domain’s boundary, the sys-
tem of equations constructed with Eq. (4) or Eq. (8) is singular since the addition of a constant is also a



Fig. 8. The three steps used to solve Poisson equation with Neumann boundary conditions. Here h denotes a Dirichlet boundary
condition, and d denotes a Neumann boundary condition.
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solution. However, in such a case, it is sufficient to be able to identify one solution since one is only inter-
ested in the solution’s gradients in the case of ‘‘all Neumann boundary conditions’’ (see for example incom-
pressible flows).

We propose a simple tree-step procedure that yields solutions with second order accurate gradients:
First, we impose a Dirichlet boundary condition at one corner of the domain (see Fig. 8, left) making
the linear system nonsingular. Numerical experiments demonstrate that the solution is second order
accurate, but that the solution’s gradients are only first order accurate near the corner because the arti-
ficial Dirichlet boundary condition corrupts the accuracy of the gradients. A correction step follows to
recover second order accuracy in the solution’s gradients. For this, the Poisson equation is solved again,
but only in a small portion of the domain containing the corner. For example, the shaded region in Fig. 8
(center) represents the portion of the domain that is solved with Dirichlet boundary conditions at the
bottom and right edges using the solution found in the first step. In the third step, gradients at the nodes
of the cell near the corner are updated using the solution of the second step (see Fig. 8, right). Numerical
experiments demonstrate that the gradients are second order accurate in the L1 norm. We note that the
cost of solving the Poisson equation in the second step is negligible since it only uses a small portion of
the domain.

8. Computing second order accurate gradients

The gradients of the solution are calculated by a weighted average of the forward and backward differences.
In the case where the neighboring nodes are not aligned with the principal axes, intermediate values are
linearly interpolated, as discussed in Sections 5.2 and 5.3. The spurious error caused by the interpolation
are successfully removed as detailed next.

8.1. Two spatial dimensions

Following the notations in Fig. 6, the gradient at u0 is calculated by the following finite differences:
ux ¼
u4 � u0

s4

� s1

s1 þ s4

þ u0 � u1

s1

� s4

s1 þ s4

� s5s6s1

2s4ðs1 þ s4Þ
uyy ;

uy ¼
u3 � u0

s3

� s2

s2 þ s3

þ u0 � u2

s2

� s3

s2 þ s3

;

where
uyy ¼
u3 � u0

s3

þ u2 � u0

s2

� �
� 2

s2 þ s3

.

Note that the calculation of the gradient involves the same cells as those used in the discretization of the
Laplace or the Poisson equations, hence preserving the locality and ease of implementation of the method.
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8.2. Three spatial dimensions

Following the notations of Fig. 7, the gradient at u0 is calculated by the following finite differences:
ux ¼
u1 � u0

s1

� s4

s1 þ s4

þ u0 � u4

s4

� s1

s1 þ s4

þ s7s8

2s4

� s1

s1 þ s4

� uzz;

uy ¼
u2 � u0

s2

� s5

s2 þ s5

þ u0 � u5

s5

� s2

s2 þ s5

þ s9s12

2s5

� s2

s2 þ s5

� uxx þ
s10s11

2s5

� s2

s2 þ s5

� uzz;

uz ¼
u6 � u0

s6

� s3

s3 þ s6

þ u0 � u3

s3

� s3

s3 þ s6

.

The finite differences for uxx, uyy, and uzz are given in Section 5.3. Again, the calculation of the gradients
involves the same cells that used in the discretization of the Laplace or the Poisson equations.

9. Examples

In this section, we present numerical evidence that confirms that the schemes described in this paper pro-
duce second order accuracy in the L1 norm for both the solution and its gradients, on highly irregular grids.
In particular, the difference of level between adjacent cells can be greater than one, illustrating the fact that the
method is supra-convergent on non-graded meshes. The linear systems of equations are solved using the sta-
bilized bi-conjugate gradient method with the incomplete LU preconditioner [27]. We note that, although
other numerical algebra solvers could be used (GMRES, multigrid, etc.), we have not investigated this avenue
at this time.

9.1. Laplace equation

9.1.1. Isotropic grid in two spatial dimensions

Consider a domain X = [0,p]2 and u satisfying Du = f on X with an exact solution of u(x,y) = e�x�y. We
impose Dirichlet boundary conditions on oX. Fig. 9 depicts the grid used and Table 1 demonstrates the second
order accuracy of the solution and its gradients in the L1 norm. We note that the grid is highly non regular
with a difference of level equal to 3 for some cells.

9.1.2. Anisotropic grid in two spatial dimensions
This example illustrates the fact that our method is supra-convergent even in the case where the ratio

between the width and height of the original cell is greater than one. We test our method on the anisotropic
grid of Fig. 10, with X = [0,2] · [0,1]. We take an exact solution of u(x,y) = sin(x)sin(y) and impose Dirichlet
boundary conditions. Table 2 illustrates the second order accuracy for the solution and its gradients in the L1

norm.
Fig. 9. Domain X = [0,p]2 and original mesh used in Section 9.1.1.



Table 1
Error analysis for Section 9.1.1

Effective resolution iu � uhi1 Order i$u � $uhi1 Order

322 7.04 · 10�3 – 3.42 · 10�2 –
642 1.74 · 10�3 2.01 1.41 · 10�2 1.28

1282 3.97 · 10�4 2.13 4.38 · 10�3 1.68
2562 9.33 · 10�5 2.09 1.18 · 10�3 1.89
5122 2.26 · 10�5 2.05 3.09 · 10�4 1.93

Fig. 10. Domain X = [0,2] · [0,1] and original mesh used in Section 9.1.2.

Table 2
Error analysis for Section 9.1.2

Effective resolution iu � uhi1 Order i$u � $uhi1 Order

162 1.49 · 10�2 – 8.03 · 10�2 –
322 3.44 · 10�3 2.11 2.36 · 10�2 1.76
642 7.36 · 10�4 2.22 8.49 · 10�3 1.47

1282 1.79 · 10�4 2.04 2.48 · 10�3 1.77
2562 4.37 · 10�5 2.03 6.64 · 10�4 1.90
5122 1.07 · 10�5 2.03 1.71 · 10�4 1.95
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9.1.3. Comparisons between adaptive grid and uniform grid

Consider a domain X = [.1,1]2 and u satisfying Du = f on X, with an exact solution of uðr; hÞ ¼ sinð1rÞ. We
impose Dirichlet boundary conditions on oX. Fig. 11 depicts the adaptive grid used and the exact solution. In
particular, we chose to refine the grid near the regions where the solution presents large gradients. Tables 3
and 4 give the results in the L1 norm for the solution and its gradients in the case of the uniform and adaptive
grids, respectively. In particular, we observe that the accuracy on the solution’s gradients is slightly superior in
the case of the adaptive grid with 1537 nodes than in the case of the uniform grid with 66,049 nodes. Likewise,
for about the same number of nodes, the accuracy in the case of the adaptive grid is significantly better than
that of the uniform grid (10�3 vs. 10�1). Finally, the adaptive solution attains a converged regime with much
less nodes than that of the uniform grid (121 nodes vs. 4000 nodes).
Fig. 11. Left: Domain X = [.1,1]2 with the original mesh refined near the origin where the solution presents stiff gradients and exact
solution (right) used in Section 9.1.3.



Table 3
Error analysis for Section 9.1.3 illustrating the limitations of a uniform grid to approximate stiff solutions

Number of nodes iu � uhi1 Order i$u � $uhi1 Order

81 6.97 · 10�2 – 1.02 · 101 –
289 1.78 · 10�2 1.96 1.93 · 101 �0.91

1089 1.53 · 10�2 .21 1.17 · 101 0.72
4225 4.31 · 10�3 1.83 3.92 · 100 1.57

16,641 1.11 · 10�3 1.95 1.06 · 100 1.88
66,049 2.78 · 10�4 1.98 2.71 · 10�1 1.97

Table 4
Error analysis for Section 9.1.3 in the case of adaptive mesh refinement

Number of nodes iu � uhi1 Order i$u � $uhi1 Order

39 8.66 · 10�2 – 5.47 · 100 –
121 2.52 · 10�2 1.77 1.78 · 100 1.63
417 7.13 · 10�3 1.82 5.70 · 10�1 1.63

1537 1.92 · 10�3 1.89 1.77 · 10�1 1.68
5889 4.97 · 10�4 1.95 5.33 · 10�2 1.73

23,041 1.26 · 10�4 1.97 1.55 · 10�2 1.77
91,137 3.18 · 10�5 1.98 4.46 · 10�3 1.80

The computational resources are focused on the regions of steep gradients.
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9.1.4. Non-rectangular domain

This example illustrates the fact that our method is supra-convergent in the case where the domain does not
have a rectangular shape. Consider a domain X depicted in Fig. 12 and an exact solution u(x,y) = sin(x)sin(y).
Dirichlet boundary conditions are imposed on the domain’s boundary. Table 5 illustrates the second order
accuracy for the solution and its gradients in the L1 norm.
Fig. 12. Domain X and original mesh used in Section 9.1.4.

Table 5
Error analysis for Section 9.1.4

Effective resolution iu � uhi1 Order i$u � $uhi1 Order

322 3.43 · 10�2 – 1.71 · 10�1 –
642 8.46 · 10�3 2.02 5.44 · 10�2 1.65

1282 2.01 · 10�3 2.07 1.44 · 10�2 1.91
2562 4.83 · 10�4 2.05 3.63 · 10�3 1.99
5122 1.19 · 10�4 2.02 9.10 · 10�4 2.00
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9.1.5. Neumann boundary condition

Consider a domain X = [0,p]2 and an exact solution u(x,y) = cos(x)cos(y) � 1. We impose Neumann
boundary conditions on the boundary of the domain shown in Fig. 13. We apply the procedure described
in Section 7 by first imposing a Dirichlet boundary condition at the origin. Table 6 demonstrates the second
order accuracy of the solution in the L1 norm prior to fixing the localized errors. Fig. 13 depicts the error in
the solution’s gradients, illustrating a peak localized near the origin (center) that is removed (right) with the
procedure described in Section 7. Table 7 demonstrates the accuracy of the solution’s gradients in the L1

norm, before and after fixing the localized errors.

9.1.6. Three spatial dimensions – Dirichlet boundary condition

Consider a domain X = [0, 1]3 and an exact solution u(x,y,z) = e�x�y�z. We impose Dirichlet boundary
conditions on oX. Fig. 14 depicts the grid used and Table 8 demonstrates the second order accuracy of the
solution and its gradients in the L1 norm.

9.1.7. Three spatial dimensions – Neumann boundary condition

Consider a domain X = [0,p]3 and an exact solution u(x,y,z) = cos(x)cos(y)cos(z) � 1. We impose Neu-
mann boundary conditions on the boundary of the domain depicted in Fig. 15. The procedure described in
Fig. 13. Domain X = [0,p]2 with the original mesh used in Section 9.1.5 (left), plot of i$u � $uhi1 before (center) and after (right)
applying the procedure described in Section 7.

Table 6
Error analysis for Section 9.1.5

Effective resolution iu � uhi1 Order

322 3.15 · 10�1 –
642 7.86 · 10�2 2.00

1282 2.05 · 10�2 1.94
2562 5.46 · 10�3 1.90
5122 1.48 · 10�3 1.89

Table 7
Error analysis for Section 9.1.5

Effective resolution Without treating the localized errors Treating the localized errors

i$u � $uhi1 Order i$u � $uhi1 Order

322 4.66 · 10�1 – 1.68 · 10�1 –
642 1.46 · 10�1 1.68 2.12 · 10�2 2.99

1282 5.80 · 10�2 1.33 5.08 · 10�3 2.06
2562 2.63 · 10�2 1.14 1.30 · 10�3 1.96
5122 1.26 · 10�2 1.06 3.35 · 10�4 1.96



Table 8
Error analysis for Section 9.1.6

Effective resolution iu � uhi1 Order i$u � $uhi1 Order

323 3.22 · 10�3 – 5.82 · 10�2 –
643 7.03 · 10�4 2.19 1.73 · 10�2 1.75

1283 1.82 · 10�4 1.95 4.75 · 10�3 1.87
2563 4.47 · 10�5 2.02 1.24 · 10�3 1.93
5123 1.10 · 10�5 2.02 3.99 · 10�4 1.64

Fig. 15. Domain X = [0,p]3, the front (left) and side (right) views of original mesh used in Section 9.1.7.

Fig. 14. Domain X = [0,1]3, the front (left) and side (right) views of the original mesh used in Section 9.1.6.
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Section 7 is applied by first imposing a Dirichlet boundary condition at the origin, then removing the spurious
localized errors in gradients as explained in Section 7. Table 9 demonstrates the second order accuracy in the
solution’s gradients in the L1 norm.

9.2. Variable coefficient Poisson equation

9.2.1. Two spatial dimensions

Consider the Poisson equation $ Æ (q$u) = f on a domain X = [0,p]2 with q(x,y) = sin(x)sin(y) + 2 and an
exact solution of u(x,y) = sin(x) + sin(y). Dirichlet boundary conditions are imposed on the boundary oX.
Table 9
Error analysis for Section 9.1.7

Effective resolution Without treating the localized errors Treating the localized errors

i$u � $uhi1 Order i$u � $uhi1 Order

322 9.70 · 10�1 – 9.70 · 10�1 –
642 1.38 · 10�1 2.82 1.12 · 10�1 3.12

1282 1.19 · 10�1 0.22 2.44 · 10�2 2.20
2562 1.05 · 10�1 0.18 6.34 · 10�3 1.95
5122 9.71 · 10�2 0.11 1.60 · 10�3 1.99



Table 10
Error analysis for Section 9.2.1

Effective resolution iu � uhi1 Order i$u � $uhi1 Order

322 7.67 · 10�2 – 3.10 · 10�1 –
642 1.92 · 10�2 2.00 7.41 · 10�2 2.06

1282 4.87 · 10�3 1.98 1.89 · 10�2 1.98
2562 1.24 · 10�3 1.97 4.74 · 10�3 1.99
5122 3.15 · 10�4 1.98 1.19 · 10�3 1.97

Table 11
Error analysis for Section 9.2.2

Effective resolution iu � uhi1 Order i$u � $uhi1 Order

323 5.02 · 10�2 – 5.90 · 10�1 –
643 1.25 · 10�2 2.01 1.42 · 10�1 2.06

1283 3.11 · 10�3 2.01 2.43 · 10�2 2.54
2563 8.10 · 10�4 1.94 6.43 · 10�3 1.92
5123 2.06 · 10�4 1.97 2.00 · 10�3 1.68
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Fig. 9 illustrates the original mesh and Table 10 demonstrates the second order accuracy of the solution and its
gradients in the L1 norm.

9.2.2. Three spatial dimensions

Consider the Poisson equation $ Æ (q$u) = f on a domain X = [0,p]2 with q(x,y,z) = sin(x + y + z) + 2 and
an exact solution of uðx; y; zÞ ¼ e�x2�y2�z2

. Dirichlet boundary conditions are imposed on the boundary oX.
Fig. 15 illustrates the original mesh and Table 11 demonstrates the second order accuracy of the solution
and its gradients in the L1 norm.

10. Conclusion

We have proposed a finite difference algorithm for the Poisson equation that yields second order accuracy
for the solutions and their gradients on non-graded grids. Sampling the solution at the nodes produces an
efficient algorithm that can be applied in a dimension by dimension framework. At T-junctions, multilinear
interpolations are used to generate intermediate values used in the discretizations. These intermediate values
introduce spurious O(1) errors that are successfully removed by simple weighting. Notably, the discretization
at the node of one cell only involves nodes of two (in 2D) or three (in 3D) adjacent cells, yielding a method
straightforward to implement. The linear systems obtained are nonsymmetric but are shown to be diagonally
dominant. We have presented two- and three-dimensional results to demonstrate the second order accuracy of
the method in the L1 norm for the solutions and their gradients. This method will serve as the basis for a
second order accurate method to solve the Poisson and Heat equations on irregular domains and on
non-graded grids. Future work will include the design of a simple second order accurate schemes for the Stefan
problem and the incompressible Navier–Stokes equations on fully adaptive grids.
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